Comentários

Argumentos em defesa da Tabela Price.

Comprovação prática da inexistência de anatocismo ou de capitalização composta das taxas de juros

Argumentos em defesa da Tabela Price. Comprovação prática da inexistência de anatocismo ou de capitalização composta das taxas de juros

A fim de oferecer conteúdo científico em defesa da Tabela Price, objetiva-se demonstrar minuciosamente, pela análise técnica, que no Sistema de Amortização Francês não existe anatocismo.

Publicado em . Elaborado em .


Comentários

8

  • 0

    Apolo Verissimo

    A fórmula de cálculo Price é sim exponencial, e calculada de forma composta, "PORÉM", consta apenas na fórmula, não significando que há incidência de juros sobre juros. O juros é calculado sobre o saldo devedor atualizado periodicamente, sendo a coisa mais justa a se fazer, então, não há anatocismo em seu uso.

  • 0

    Apolo Verissimo

    O autor disse tudo nesse trecho:

    De todo o exposto, forçoso concluir que o uso da Tabela Price utilizada como sistema de amortização de empréstimos em parcelas, não enseja a capitalização composta das taxas de juros, ou cobrança de juros dos juros, vez que, pela fórmula de cálculo que adota, sua prestação é constante e uniforme, valendo-se para o tomador do empréstimo de eficaz instrumento de planejamento financeiro de suas dívidas, bem como de inigualável praticidade, pois extingue totalmente a dívida ao final do empréstimo.

    A assertiva supra é facilmente comprovada quando se percebe que os juros são calculados sobre o saldo devedor do período precedente ao considerado, e não se somam ao saldo devedor remanescente, que é resultado da subtração da parcela atinente à amortização do saldo devedor do período anterior quando a prestação é normalmente paga.

    No mais, sua fórmula de cálculo de prestação, que se vale do fator TP, também não capitaliza juros, vez que não se trata de sistema que leva em conta os juros compostos, mas adota o que na Matemática Financeira se denomina desconto composto de juros, justificando, assim, a existência do fator exponencial em sua fórmula.

  • 0

    Demetrio Antunes Bassili

    Discordo. A resposta é SIM. Existe anatocismo nos financiamentos gerados pela Tabela Price e quando utilizado o SAC, SACRE, etc. Todos os sistemas de amortização que calculam juros sobre o saldo devedor praticam o anatocismo.
    Os assuntos relativos à matemática financeira, bem como especificamente ao Sistema Francês de Amortização (conhecido como Sistema Price), são ensinados também (fazendo parte da grade de disciplinas) no curso de Engenharia e Análise de Sistemas. Isso é necessário, pois esses assuntos fazem parte da vida profissional nessas esferas. Dessa forma, como engenheiro e pós-graduado em Administração/Análise de Sistemas, posso também colocar a minha respeitada opinião.
    Do ponto de vista operacional, pagar todos os juros do mês com o valor da prestação, e, do que sobrar, amortizar parte do principal, ou seja, aplicar o método utilizado no mercado e ensinado nos cursos básicos de matemática financeira, citado também no artigo 354 do Código Civil (Lei 10406/02) tem o seu valor, pois é dessa forma que, fácil e comumente, são controladas as variáveis do demonstrativo de evolução do saldo devedor (quadro de amortização). Entretanto, apenas de modo prático, facilitador, contábil pode-se utilizar esse recurso, pois ele, sem intenção, esconde a capitalização de juros. Quando analisamos originalmente a situação, a ciência matemática toma o seu lugar por meio de seus conceitos fundamentais, deixando de lado as técnicas que facilitam os cálculos, pois podem atrapalhar o entendimento do assunto. O homem, se quiser, pode até observar a matemática de forma equivocada, porém nunca poderá mudá-la. O fato de ser possível, com o valor da prestação, pagar todos os juros do mês, e do que sobra, amortizar o principal (artigo 354), existe porque R$ 1,00 de juros vale o mesmo que R$ 1,00 de principal. Portanto, temos duas variáveis distintas (que não deveriam ser distorcidas) com a mesma unidade. Nesse caso, em se tratando de dinheiro e por possuírem a mesma unidade, contabilmente é possível, com o valor da prestação, pagar todos os juros do mês, e do que sobra, amortizar o principal sem afetar a variável “saldo devedor”. Também de forma operacional seria possível o inverso, ou seja, com o valor da prestação, amortizar o principal (parte), e como, inicialmente, nada sobraria desse pagamento, todos os juros permaneceriam, sem afetar também em nada a variável “saldo devedor”. Nesse segundo caso, ao final do financiamento, somente existiriam juros a serem pagos com as últimas prestações. Deve-se dizer que, em ambos os casos, o mesmo financiamento seria quitado com as mesmas prestações pagas nas mesmas datas. O leitor está percebendo que, quando à despesa, não importa se observamos o financiamento dessa ou daquela forma, isto é, pagando os juros primeiramente ou não. O que importa para o mutuário é o quanto está se pagando (o anatocismo não está na forma de controle, e sim no regime de capitalização). A ciência matemática está acima da vontade humana e, nessa análise original, devemos observar o financiamento como a própria ciência estruturalmente o estabelece. Cada prestação mensal, proporcionalmente (se qualquer tendência ou inclinação para qualquer lado) paga parte do principal e parte dos juros, pois nunca poderemos nos esquecer que principal e juros são duas variáveis diferentes essencialmente. Não devemos também, originalmente, dar uma importância maior para qualquer uma delas. Assim, o anatocismo fica evidenciado de forma clara e todas as equações pertinentes ao assunto entram em sintonia com a ótica original exposta. Ao se calcular futuramente o valor das iguais prestações sob regime de juros simples (ressaltando que não existe uma fórmula prática para esse objetivo - pois a expressão inicial é irredutível), por exemplo, notamos que o valor é menor do que sob regime de juros compostos com os mesmos dados; e em ambos os casos, a observação original de suas variáveis atestam a precisão dos resultados obtidos em cada um dos regimes de capitalização.
    Eng. Demétrio Antunes Bassili. Autor do livro: "Retirando os Juros sobre Juros da Tabela Price" - 4ª. edição. Graduado em Engenharia Eletrônica pela Faculdade de Engenharia Industrial (FEI) e pós-graduado em Administração de Empresas com núcleo de concentração em Análise de Sistemas pela Faculdade de Ciências Econômicas de São Paulo.

  • 0

    Eduardo Siqueira

    Ainda tem gente defendendo que não há anatocismo na Price? Olha, é muito simples de se comprovar que há: jogue os dados da tabela que você fez no Excel e plote um gráfico a partir da coluna dos juros, ou mesmo da amortização. Faça isso escolhendo o modelo de "linha". Sabe qual será o resultado? Uma curva exponencial, demonstrando que há sim capitalização de juros, pois os valores crescem numa progressão geométrica. Não há nada de linear na Price, meu amigo. Mesmo na SAC há anatocismo, tambem comprovado através de um mero gráfico. O problema é que, no SAC, a curva só fica nitida em um grande numero de prestações, por isso que é mais dificil comprovar anatocismo na SAC do que na Price.

  • 0

    Wesley Ribeiro

    Parabéns,
    realmente provou a existência do anatocismo.
    Recomendo também a leitura do livro do prof Edson Rovina: Uma Nova Visão da Matemática Financeira. Ed Millenium.

  • 0

    Humberto Maia

    Parabéns pela análise mas... lamento informar que ela não somente confirma o anatocismo como demonstra que ele ocorre de

    duas maneiras: 1) no cálculo da prestação inicial e (2)na capitalização da "amortização negativa". No 2º caso, o anatocismo é circunstancial, só acontece se houver descompasso entre a correção

    monetária do saldo devedor e a da prestação, como o Senhor demonstrou muito bem. No 1º, é estrutural e decorre da

    “ingenuidade” (eufemismo para sagacidade) dos “banqueiros” (eufemismo para agiotas) ao utilizar na amortização um

    nstrumento explicitamente concebido para capitalização. Qual a diferença? Na amortização você recebe/paga agora; na

    capitalização, você recebe/paga depois! Para receber/pagar depois, 12% a.a. é igual a 1% a.m. Mas, para receber/pagar

    antes, 12% a.a. é igual a 0,9489% a.m. Essa é a malandragem dos “banqueiros”! Os juros são pagos mensalmente mas eles

    calculam a prestação inicial com uma taxa, 1% a.m., que, com os juros pagos mensalmente, correspondem a 12,6825% a.a. A diferença (12,6825% - 12%) é corresponde à capitalização (juros sobre juros=anatocismo) da taxa embutida na prestação inicial, que vigorará ao longo de todo o contrato (10/20/20 anos). Imagine o efeito cumulativo (exponencial) da incidência das duas modalidades de anatocismo, como ainda ocorre em todos os contratos regidos pela equivalência salarial... Na dúvida, observe que os bancos só cometem esse pequeno "erro" quando tem a receber (financiamentos); quando têm a pagar (investimentos) eles o corrigem rapidinho! Recomendo a leitura do FazAConta em http://fazaconta.com/taxa-mensal-vs-anual.htm

  • 0

    Claito Macedo

    Prezado senhor,

    respeito vossa tese, mas não conheço um matemático sequer que defenda a não capitalização de juros na tabela Price. Conheço, sim, diversos outros profissionais a defendê-la, porém é oportuno dizer que a prova matemática é a mais robusta e rígida de todas as provas científicas e o método adotado não tem característas de prova acadêmica.
    Saudações financistas.

Voltar para o texto: Argumentos em defesa da Tabela Price.